首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34201篇
  免费   2514篇
  国内免费   2971篇
化学   22018篇
晶体学   175篇
力学   695篇
综合类   640篇
数学   6578篇
物理学   9580篇
  2023年   279篇
  2022年   473篇
  2021年   1288篇
  2020年   876篇
  2019年   895篇
  2018年   662篇
  2017年   729篇
  2016年   961篇
  2015年   1042篇
  2014年   1286篇
  2013年   2277篇
  2012年   1574篇
  2011年   1834篇
  2010年   1684篇
  2009年   2162篇
  2008年   2205篇
  2007年   2431篇
  2006年   1896篇
  2005年   1183篇
  2004年   1134篇
  2003年   1111篇
  2002年   1050篇
  2001年   1044篇
  2000年   734篇
  1999年   564篇
  1998年   580篇
  1997年   416篇
  1996年   483篇
  1995年   438篇
  1994年   432篇
  1993年   472篇
  1992年   453篇
  1991年   306篇
  1990年   251篇
  1989年   205篇
  1988年   242篇
  1987年   199篇
  1986年   203篇
  1985年   320篇
  1984年   228篇
  1983年   140篇
  1982年   289篇
  1981年   467篇
  1980年   426篇
  1979年   463篇
  1978年   368篇
  1977年   279篇
  1976年   237篇
  1974年   74篇
  1973年   149篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
61.
A series of stable heterometallic Fe2M cluster‐based MOFs ( NNU‐31‐M , M=Co, Ni, Zn) photocatalysts are presented. They can achieve the overall conversion of CO2 and H2O into HCOOH and O2 without the assistance of additional sacrificial agent and photosensitizer. The heterometallic cluster units and photosensitive ligands excited by visible light generate separated electrons and holes. Then, low‐valent metal M accepts electrons to reduce CO2, and high‐valent Fe uses holes to oxidize H2O. This is the first MOF photocatalyst system to finish artificial photosynthetic full reaction. It is noted that NNU‐31‐Zn exhibits the highest HCOOH yield of 26.3 μmol g?1 h?1 (selectivity of ca. 100 %). Furthermore, the DFT calculations based on crystal structures demonstrate the photocatalytic reaction mechanism. This work proposes a new strategy for how to design crystalline photocatalyst to realize artificial photosynthetic overall reaction.  相似文献   
62.
A series of carbon-coated, nitrogen-doped titanium dioxide photocatalysts was produced and characterized. N-doped TiO2 powder samples were prepared using a sol-gel method and subsequently used for making doped-TiO2 thin films on glass substrates. Carbon layers were coated on the films by a thermal decomposition method using catechol. Diffuse reflectance spectra and Mott-Schottky analyses of the samples proved that nitrogen doping and carbon coating can slightly lower the band gap of TiO2, broaden its absorption to visible light and enhance its n-type character. According to photocatalytic tests against model contaminants, carbon-coated nitrogen-doped TiO2 films have better performance than simple TiO2 on the degradation of Rhodamine B dye molecules, but are poorly effective for degrading 4-chlorophenol molecules. Several possible explanations are proposed for this result, supported by scavenging experiments. This reveals the importance of a broad substrate scope when assessing new photocatalytic materials for water treatment, something which is often overlooked in many literature studies.  相似文献   
63.
Although often used in molecular dynamics, in this work the Manning–Rosen potential is parameterized to compute the scattering phase shifts for the nucleon–nucleon and the alpha-nucleon systems by exploiting the standard phase function method. We obtain excellent agreement in phase shifts with the more sophisticated calculations up to partial waves ${\ell }=2.$  相似文献   
64.
《Arabian Journal of Chemistry》2020,13(11):8424-8457
Nowadays, increasing extortions regarding environmental problems and energy scarcity have stuck the development and endurance of human society. The issue of inorganic and organic pollutants that exist in water from agricultural, domestic, and industrial activities has directed the development of advanced technologies to address the challenges of water scarcity efficiently. To solve this major issue, various scientists and researchers are looking for novel and effective technologies that can efficiently remove pollutants from wastewater. Nanoscale metal oxide materials have been proposed due to their distinctive size, physical and chemical properties along with promising applications. Cupric Oxide (CuO) is one of the most commonly used benchmark photocatalysts in photodegradation owing to the fact that they are cost-effective, non-toxic, and more efficient in absorption across a significant fraction of solar spectrum. In this review, we have summarized synthetic strategies of CuO fabrication, modification methods with applications for water treatment purposes. Moreover, an elaborative discussion on feasible strategies includes; binary and ternary heterojunction formation, Z-scheme based photocatalytic system, incorporation of rare earth/transition metal ions as dopants, and carbonaceous materials serving as a support system. The mechanistic insight inferring photo-induced charge separation and transfer, the functional reactive radical species involved in a photocatalytic reaction, have been successfully featured and examined. Finally, a conclusive remark regarding current studies and unresolved challenges related to CuO are put forth for future perspectives.  相似文献   
65.
66.
We study the evolution properties of spin-boson systems by a systematic numerical iteration approach, which performs well in the whole coupling regime. This approach evaluates a set of coefficients in the formal expression of the time-dependent Schr?dinger equation by expanding the initial state in Fock space. This set of coefficients is unique for the spin-boson Hamiltonian studied, allowing one to calculate the time evolution from different initial states. To complement our numerical calculations, we apply the method to the Buck–Sukumar model. We find that when the ground-state energy of the model is unbounded and no ground state exists in a certain parameter space, the time evolution of the physical quantities is naturally unstable.  相似文献   
67.
Introducing the top partner is a common way to cancel the largest quadratically divergent contribution to the Higgs mass induced by the top quark. In this work, we study single top partner production in the tZ channel at eγ collision in the littlest Higgs model with T-parity(LHT). Since it is well known that polarized beams can enhance the cross section, we analyze the signal via polarized electron beams,and photon beams. we have selected two decay modes for comparison, based on the leptonic or the hadronic decays of the W and Z from the top partner. We then construct a detailed detector simulation, and choose a set of cuts to enhance signal significance. For mode A(B), the capacity for exclusion in this process at s~(1/2)=3TeV is comparable to the current experimental limits with L=1000(500) fb~(-1). If the integrated luminosity can be increased to 3000 fb~(-1), the top partner mass+mTcan be excluded up to 1350(1440) GeV at 2σ level. We also considered the initial state radiation effect, and find that this effect reduces the excluding ability of the eγ collision on the the top partner mass by approximately 10 GeV. Moreover, the ability to exclude the LHT parameter space at eγ collision complements the existing research.  相似文献   
68.
In this work, the mesoscale mechanics of metals, which links their microscopic physics and macroscopic mechanics, was established. For practical applications, the laws for quantitatively predicting life of cycle and time-dependent fracture behavior such as fatigue, hydrogen embrittlement, and high-temperature creep were derived using particle transport phenomena theories such as dislocation group dynamics, hydrogen diffusion, and vacancy diffusion. Furthermore, these concepts were also applied for estimating the degree of viscoelastic deterioration of blood vessel walls, which is dominated by a time-dependent mechanism, and for the diagnosis of aneurysm accompanied by the viscoelastic deterioration of the blood vessel wall. In these theories, new mechanical indexes were derived as dominant factors for predicting the life of fatigue crack growth and the time-dependent fracture of notched specimens of materials such as hydrogen embrittlement and high-temperature creep. Furthermore, as an example of a practical application, these theories were applied to estimate the degree of viscoelastic deterioration and chaotic motions of blood vessel walls, which are closely related to blood vessel diseases such as atherosclerosis and aneurysm. Moreover, new indexes to diagnose them were also proposed for clinical applications.  相似文献   
69.
The (1+2)-dimensional chiral nonlinear Schrödinger equation (2D-CNLSE) as a nonlinear evolution equation is considered and studied in a detailed manner. To this end, a complex transform is firstly adopted to arrive at the real and imaginary parts of the model, and then, the modified Jacobi elliptic expansion method is formally utilized to derive soliton and other solutions of the 2D-CNLSE. The exact solutions presented in this paper can be classified as topological and nontopological solitons as well as Jacobi elliptic function solutions.  相似文献   
70.
The multiple lump solutions method is employed for the purpose of obtaining multiple soliton solutions for the generalized Bogoyavlensky-Konopelchenko(BK) equation. The solutions obtained contain first-order, second-order, and third-order wave solutions. At the critical point,the second-order derivative and Hessian matrix for only one point is investigated, and the lump solution has one maximum value. He's semi-inverse variational principle(SIVP) is also used for the generalized BK equation. Three major cases are studied, based on two different ansatzes using the SIVP. The physical phenomena of the multiple soliton solutions thus obtained are then analyzed and demonstrated in the figures below, using a selection of suitable parameter values.This method should prove extremely useful for further studies of attractive physical phenomena in the fields of heat transfer, fluid dynamics, etc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号